三个素性检验
Python实现三个素性检验
使用方法:
直接运行,根据提示选择模式、输入检验的数n和循环次数k即可
代码
import random
import time
def QuickPower(a,n,p):#快速幂算法
tmp = a
ret =1
while(n >0):
if(n&1):
ret = (ret * tmp) % p
tmp = (tmp * tmp) % p
n>>=1
return ret
def Jacobi(n,m):# calc Jacobi(n/m)
n = n%m
if n==0:
return 0
Jacobi2 =1
if not(n&1):#若有n为偶数,计算Jacobi2 = Jacobi(2/m)^(s)其中n = 2^s*t t为奇数
k = (-1)**(((m**2-1)//8)&1)
while not(n&1):
Jacobi2 *= k
n >>=1
if n==1:
return Jacobi2
return Jacobi2 * (-1)**(((m-1)//2*(n-1)//2)&1) * Jacobi(m%n,n)
def Exgcd(r0,r1):# calc ax+by = gcd(a, b) return x
x0,y0 =1,0
x1,y1 =0,1
x,y = r0,r1
r = r0 % r1
q = r0 // r1
while r:
x,y = x0 - q * x1,y0 - q * y1
x0,y0 = x1,y1
x1,y1 = x,y
r0 = r1
r1 = r
r = r0 % r1
q = r0 // r1
return x
def Fermat(x,T):# Fermat素性判定
if x <2:
return False
if x<=3:
return True
if x%2==0 or x%3==0:
return False
for i in range(T):
ran = random.randint(2,x-2)#随机取[2, x-2]的一个整数
if QuickPower(ran,x-1,x) !=1:
return False
return True
def Solovay_Stassen(x,T):# Solovay_Stassen素性判定
if x <2:
return False
if x <=3:
return True
if x%2==0 or x%3==0:
return False
for i in range(T):#随机选择T个整数
ran = random.randint(2,x-2)
r = QuickPower(ran,(x-1)//2,x)
if r !=1 and r != x-1:
return False
if r == x-1:
r = -1
if r != Jacobi(ran,x):
return False
return True
def MillerRabin(x,ran):# x-1 = 2^s*t
tx = x-1
s2 = tx&(~tx+1)#取出最后一位以1开头的二进制 即2^s
r = QuickPower(ran,tx//s2,x)
if r ==1 or r == tx:
return True
while s2>1:#从2^s -> 2^1循环s次
r = (r*r)%x
if r ==1:
return False
if r == tx:
return True
s2 >>=1
return False
def MillerRabin_init(x,T):#Miller-Rabin素性判定
if x <2:
return False
if x <=3:
return True
if x%2==0 or x%3==0:
return False
for i in range(T):#随机选择T个整数
ran = random.randint(2,x-2)
if not MillerRabin(x,ran):
return False
return True
def CRT(b,m,n):# calc x = b[] % m[]
M =1
for i in range(n):
M *= m[i]
ans =0
for i in range(n):
ans += b[i] * M // m[i] * Exgcd(M//m[i],m[i])
return ans%M
if __name__ == "__main__":
print('1 :费马素性检验\n2 : Solovay_Stassen素性检验\n3 : 米勒.拉宾素性检验\n4 : 三个素性检验一起进行\n')
cho=input('选择运行模式:')
if cho!='1'and cho!='2'and cho!='3'and cho!='4' :
print('输入错误!!')
exit()
n = int(input("请输入需要检测的整数n:"))
k = int(input("请输入循环次数k:"))
print('*'*100)
if cho=='1':
a=Fermat(n,k)
print('费马素性检验结果:',a)
elif cho=='2':
b=Solovay_Stassen(n,k)
print('Solovay_Stassen素性检验结果:',b)
elif cho=='3':
c=MillerRabin_init(n,k)
print('米勒.拉宾素性检验结果:',c)
elif cho=='4':
start = time.perf_counter()
a=Fermat(n,k)
end = time.perf_counter()
print('费马素性检验结果:',a)
print("费马素性检验运行耗时",end-start)
print('\n')
start = time.perf_counter()
b=Solovay_Stassen(n,k)
end = time.perf_counter()
print('Solovay_Stassen素性检验结果:',b)
print("Solovay_Stassen素性检验运行耗时",end-start)
print('\n')
start = time.perf_counter()
c=MillerRabin_init(n,k)
end = time.perf_counter()
print('米勒.拉宾素性检验结果:',c)
print("米勒.拉宾素性检验运行耗时",end-start)
运行效果
本博客所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转载请注明来自 Tree's Blog!